In vivo binding and hierarchy of assembly of the yeast RNA polymerase I transcription factors.
نویسندگان
چکیده
Transcription by RNA polymerase I in Saccharomyces cerevisiae requires a series of transcription factors that have been genetically and biochemically identified. In particular, the core factor (CF) and the upstream activation factor (UAF) have been shown in vitro to bind the core element and the upstream promoter element, respectively. We have analyzed in vivo the DNAse I footprinting of the 35S promoter in wild-type and mutant strains lacking one specific transcription factor at the time. In this way we were able to unambiguously attribute the protections by the CF and the UAF to their respective putative binding sites. In addition, we have found that in vivo a binding hierarchy exists, the UAF being necessary for CF binding. Because the CF footprinting is lost in mutants lacking a functional RNA polymerase I, we also conclude that the final step of preinitiation-complex assembly affects binding of the CF, stabilizing its contact with DNA. Thus, in vivo, the CF is recruited to the core element by the UAF and stabilized on DNA by the presence of a functional RNA polymerase I.
منابع مشابه
Regulation of TATA-binding protein dynamics in living yeast cells.
Although pathways for assembly of RNA polymerase (Pol) II transcription preinitiation complexes (PICs) have been well established in vitro, relatively little is known about the dynamic behavior of Pol II general transcription factors in vivo. In vitro, a subset of Pol II factors facilitates reinitiation by remaining very stably bound to the promoter. This behavior contrasts markedly with the hi...
متن کاملIndependent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo.
Transcription by all three eukaryotic RNA polymerases involves the assembly of a large preinitiation complex (PIC) at gene promoters. The PIC comprises several general transcription factors (GTFs), including TBP, and the respective RNA polymerase. It has been suggested that some GTFs remain stably bound at active promoters to facilitate multiple transcription events. Here we used two complement...
متن کاملAssociation of Yeast RNA Polymerase I with a Nucleolar Substructure Active in Rrna Synthesis and Processing
A novel ribonucleoprotein complex enriched in nucleolar proteins was purified from yeast extracts and constituents were identified by mass spectrometry. When isolated from rapidly growing cells, the assembly contained ribonucleic acid (RNA) polymerase (pol) I, and some of its transcription factors like TATA-binding protein (TBP), Rrn3p, Rrn5p, Rrn7p, and Reb1p along with rRNA processing factors...
متن کاملYeast RNA polymerase I binds preferentially to A+T-rich linkers in rDNA.
Restriction fragments of yeast rDNA retained by purified RNA polymerases on nitrocellulose filters were analysed by gel electrophoresis. The EcoRI fragment B was preferentially retained by RNA polymerase I, but not by RNA polymerase III. The in vivo initiation sites for both polymerases are located within this fragment. Further analysis indicated that the preferred binding site for RNA polymera...
متن کاملVertebrate Spt2 is a novel nucleolar histone chaperone that assists in ribosomal DNA transcription.
In eukaryotes, transcription occurs in the chromatin context with the assistance of histone-binding proteins, such as chromatin/nucleosome remodeling factors and histone chaperones. However, it is unclear how each remodeling factor or histone chaperone functions in transcription. Here, we identify a novel histone-binding protein, Spt2, in higher eukaryotes. Recombinant human Spt2 binds to histo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2001